题目内容
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级100名学生中进行了抽样调查,发现喜欢甜品的占70%.这100名学生中南方学生共80人.南方学生中有20人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有6名数学系的学生,其中2名不喜欢甜品;有5名物理系的学生,其中1名不喜欢甜品.现从这两个系的学生中,各随机抽取2人,记抽出的4人中不喜欢甜品的人数为X,求X的分布列和数学期望.
附:.
【答案】(1)详见解析;(2)有95%的把握认为“南方学生和北方学生在选甜品的饮食习惯方面有差异”;(3)分布列详见解析,数学期望为.
【解析】
(1)由南方学生共80人,南方学生中有20人不喜欢甜品,总人数为100,喜欢甜点的占70%,即可填表;
(2)根据列联表中的数据求出的值,然后再结合临界值表中的数据可得结论;
(3)根据离散型随机变量的概率公式计算分布列和数学期望.
解:(1)
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(2)由题意,
,
∴有95%的把握认为“南方学生和北方学生在选甜品的饮食习惯方面有差异”.
(3)X的所有可能取值为0,1,2,3,
,
,
,
,
则X的分布列为
X | 0 | 1 | 2 | 3 |
P |
所以X的数学期望.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目