题目内容
【题目】设为不同的两点,直线,下列命题正确的有( ).
①不论为何值,点都不在直线上;
②若,则过点的直线与直线平行;
③若,则直线经过的中点;
④若,则点在直线的同侧且直线与线段的延长线相交.
A.1个B.2个C.3个D.4个
【答案】D
【解析】
由可得①正确,分和两种情况讨论可得直线与直线平行,可得②正确,当时,可得到,从而得到③正确,当时可得和,然后可得④正确.
因为中,,所以点不在直线上,故①正确
当时,根据得到,化简得,
即直线的斜率为,又直线的斜率为,由①可知点不在直线上,
得到直线与直线平行
当时,可得直线与直线的斜率都不存在,也满足平行,故②正确
当时,得到,化简得
而线段的中点坐标为,所以直线经过的中点,故③正确
当时,得到,所以,
即,所以点在直线的同侧
且,可得点与点到直线的距离不等,
所以延长线与直线相交,故④正确
综上:命题正确的有4个
故选:D
练习册系列答案
相关题目
【题目】某大学餐饮中心为了了解新生的饮食习惯,在某学院大一年级100名学生中进行了抽样调查,发现喜欢甜品的占70%.这100名学生中南方学生共80人.南方学生中有20人不喜欢甜品.
(1)完成下列列联表:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | |||
北方学生 | |||
合计 |
(2)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(3)已知在被调查的南方学生中有6名数学系的学生,其中2名不喜欢甜品;有5名物理系的学生,其中1名不喜欢甜品.现从这两个系的学生中,各随机抽取2人,记抽出的4人中不喜欢甜品的人数为X,求X的分布列和数学期望.
附:.