题目内容
【题目】已知定点,定直线: ,动圆过点,且与直线相切.
(Ⅰ)求动圆的圆心轨迹的方程;
(Ⅱ)过点的直线与曲线相交于, 两点,分别过点, 作曲线的切线, ,两条切线相交于点,求外接圆面积的最小值.
【答案】(Ⅰ);(Ⅱ)当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
【解析】试题分析:(Ⅰ)设,由化简即可得结论;(Ⅱ)由题意的外接圆直径是线段,设: ,与 联立得,从而得, 时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
试题解析:(Ⅰ)设点到直线的距离为,依题意.
设,则有 .
化简得.
所以点的轨迹的方程为.
(Ⅱ)设: ,
代入中,得.
设, ,
则, .
所以 .
因为: ,即,所以.
所以直线的斜率为,直线的斜率为.
因为,
所以,即为直角三角形.
所以的外接圆的圆心为线段的中点,线段是直径.
因为,
所以当时线段最短,最短长度为4,此时圆的面积最小,最小面积为.
【方法点晴】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题(Ⅰ)就是利用方法①求圆心轨迹方程的.
练习册系列答案
相关题目