题目内容
【题目】设函数.
(1)若是偶函数,求的值;
(2)若存在,使得成立,求实数的取值范围;
(3)设函数,若在有零点,求实数的取值范围.
【答案】(1);(2);(3).
【解析】
(1)由偶函数的定义,作差变形后可求出实数的值;
(2)由已知代入可得,不等式两边同时除以可得出,换元,可得出,利用二次函数的单调性求出函数在区间上的最大值,即可得出实数的取值范围;
(3)求出,换元,由此可得出函数在上有零点,利用参变量分离法得出,利用单调性求出函数在区间上的值域,即可得出实数的取值范围.
(1)若是偶函数,则,即
即,则,即;
(2),即,即,
则,设,,.
设,则,
则函数在区间上为增函数,
当时,函数取得最大值,.
因此,实数的取值范围是;
(3),则,
则,
设,当时,函数为增函数,则,
若在有零点,即在上有解,即,即,
函数在上单调递增,则,即.,因此,实数的取值范围是.
练习册系列答案
相关题目