题目内容
【题目】在边长为4的正方形的边上有一点沿着折线由点(起点)向点(终点)运动。设点运动的路程为,的面积为,且与之间的函数关系式用如图所示的程序框图给出.
(1)写出框图中①、②、③处应填充的式子;
(2)若输出的面积值为6,则路程的值为多少?并指出此时点在正方形的什么位置上?
【答案】(1);(2)当时,点在正方形的上;当时,点在正方形的上.
【解析】试题分析:(1)先求出定义域,然后根据点P的位置进行分类讨论,根据三角形的面积公式求出每一段△ABP的面积与P移动的路程间的函数关系式,最后用分段函数进行表示即可写出框图中①、②、③处应填充的式子;(2)利用△APB的面积为6,结合函数解析式,建立等式,即可求x的取值,进而得出此时点P的在正方形的什么位置上
试题解析:(1)由于x=0与x=12时,三点A、B、P不能构成三角形,故这个函数的
定义域为(0,12).
当0<x≤4时,S=f(x)=4x=2x;
当4<x≤8时,S=f(x)=8;
当8<x<12时,S=f(x)=4(12﹣x)=2(12﹣x)=24﹣2x.
∴这个函数的解析式为f(x)=,
∴框图中①、②、③处应填充的式子分别为:y=2x,y=8,y=24﹣2x.
(2)若输出的面积y值为6,则
当0<x≤4时,2x=6,∴x=3;
当8<x<12时,S=24﹣2x=6,∴x=9,
综上,当x=3时,此时点P的在正方形的边BC上,当x=9时,此时点P的在正方形的边DA上.
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)