题目内容

【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.

(1)求椭圆的方程;

(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.

【答案】(1)(2)

【解析】试题分析:(1)根据条件列出关于两个方程,解方程组可得值,即得椭圆的方程;(2)联立直线方程与椭圆方程,利用韦达定理及弦长公式可得底边长(用直线斜率表示),根据点到直线距离公式可得三角形的高(用直线斜率表示),根据三角形面积公式可得面积,关于直线斜率的函数关系式,最后根据分式函数求值域方法求函数最值,注意讨论斜率不存在的情形.

试题解析:(1)依题意,,解得

故椭圆的方程为.

(2)当直线的斜率不存在时,不妨取

.

②当直线的斜率存在时,设直线的方程为

联立方程化简得

,则

到直线的距离

因为是线段的中点,所以点到直线的距离为

.

综上,面积的最大值为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网