题目内容
【题目】某海域的东西方向上分别有A,B两个观测点(如图),它们相距海里.现有一艘轮船在D点发出求救信号,经探测得知D点位于A点北偏东45°,B点北偏西60°,这时,位于B点南偏西60°且与B点相距海里的C点有一救援船,其航行速度为30海里/小时.
(1)求B点到D点的距离BD;
(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.
【答案】(1);(2)1
【解析】
(1)在△DAB中利用正弦定理,求出BD;
(2)在△DCB中,利用余弦定理求出CD,根据速度求出时间.
(1)由题意知AB=5(3+)海里,
∠DBA=90°﹣60°=30°,∠DAB=90°﹣45°=45°,
∴∠ADB=180°﹣(45°+30)°=105°,
在△DAB中,由正弦定理得=,
∴DB==
=
==10(海里)
(2)在△DBC中,∠DBC=∠DBA+∠ABC=30°+(90°﹣60°)=60°,…(10分)
BC=20(海里),由余弦定理得
CD2=BD2+BC2﹣2BDBCcos∠DBC
=300+1200﹣2×10×20×=900,
∴CD=30(海里),则需要的时间t==1(小时).
答:救援船到达D点需要1小时.
【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:
(1) AD边所在直线的方程;
(2) DC边所在直线的方程.
【题目】某单位需要从甲、乙人中选拔一人参加新岗位培训,特别组织了个专项的考试,成绩统计如下:
第一项 | 第二项 | 第三项 | 第四项 | 第五项 | |
甲的成绩 | |||||
乙的成绩 |
(1)根据有关统计知识,回答问题:若从甲、乙人中选出人参加新岗培训,你认为选谁合适,请说明理由;
(2)根据有关槪率知识,解答以下问题:
从甲、乙人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.