题目内容
【题目】由四个不同的数字1,2,4,组成无重复数字的三位数.(最后的结果用数字表达)
(Ⅰ)若,其中能被5整除的共有多少个?
(Ⅱ)若,其中能被3整除的共有多少个?
(Ⅲ)若,其中的偶数共有多少个?
(Ⅳ)若所有这些三位数的各位数字之和是252,求.
【答案】(1)6个;(2)12个;(3)14个;(4)x=7
【解析】
试题(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;
(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;
(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;
(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.
解:(1)若x=5,则四个数字为1,2,4,5;
又由要求的三位数能被5整除,则5必须在末尾,
在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
即能被5整除的三位数共有6个;
(2)若x=9,则四个数字为1,2,4,9;
又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,
取出的三个数字为1、2、9时,有A33=6种情况,
取出的三个数字为2、4、9时,有A33=6种情况,
则此时一共有6+6=12个能被3整除的三位数;
(3)若x=0,则四个数字为1,2,4,0;
又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,
当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
当末位是2或4时,有A21×A21×A21=8种情况,
此时三位偶数一共有6+8=14个,
(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,
则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,
故x=0不成立;
当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,
则每个数字用了=18次,
则有252=18×(1+2+4+x),解可得x=7.
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式。某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(1)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(2)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
A | B | 合计 | |
认可 | |||
不认可 | |||
合计 |
(3)在A,B城市对此种交通方式“认可”的用户中按照分层抽样的方法抽取6人,若在此6人中推荐2人参加“单车维护”志愿活动,求A城市中至少有1人的概率。
参考数据如下:(下面临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式,其中)
【题目】已知某种植物每日平均增长高度(单位:)与每日光照时间(单位:)之间的关系有如下一组数据:
(单位: ) | 6 | 7 | 8 | 9 | 10 |
(单位: ) | 3.5 | 5.2 | 7 | 8.6 | 10.7 |
(1)求关于的回归直线方程;
(2)计算相关指数的值,并说明回归模型拟合程度的好坏;
(3)若某天光照时间为8.5小时, 预测该天这种植物的平均增长高度(结果精确到0.1)
参考公式及数据:,,, ,,
【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)
分数 | |||||||
甲班频数 | |||||||
乙班频数 |
(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.
参考公式:,其中.
临界值表