题目内容
【题目】如图,在中,,,,D为线段BC(端点除外)上一动点.现将沿线段AD折起至,使二面角的大小为120°,则在点D的移动过程中,下列说法错误的是( )
A.不存在点,使得
B.点在平面上的投影轨迹是一段圆弧
C.与平面所成角的余弦值的取值范围是
D.线段的最小值是
【答案】D
【解析】
过点B作AD的垂线,交AD于点E,连接,,过点作BE的垂线,交BE于点H,进而证明平面ABC,即在平面ABC上的投影为点H,连接CH,假设,则,即可判断A;由,可判断点E的轨迹,进而判断B;连接AH,则与平面ABC所成的角为,由相似可得,设,可得的范围,即可得的范围,即可判断C;设,在中利用余弦定理求解,即可判断D.
过点B作AD的垂线,交AD于点E,连接,,过点作BE的垂线,交BE于点H,易知,则平面,所以为二面角的平面角的补角,即,所以,即H为BE的中点,易知平面平面,又,所以平面ABC,所以在平面ABC上的投影为点H,
对于选项A,若,连接CH,则,而这是不可能成立的,故A正确;
对于选项B,因为,所以点E的轨迹为以AB为直径的一段圆弧,又H为BE的中点,所以点H的轨迹也为一段圆弧,故B正确;
对于选项C,连接AH,则与平面ABC所成的角为,设,则,所以由,得,所以,所以,所以,所以,故C正确;
对于选项D,设,则,,
,
其中,故,故D错误,
故选:D
【题目】桥牌是一种高雅、文明、竞技性很强的智力性游戏.近年来,在中国桥牌协会“桥牌进校园”活动的号召下,全国各地中小学纷纷积极加入到青少年桥牌推广的大营中.为了了解学生对桥牌这项运动的兴趣,某校从高一学生中随机抽取了200名学生进行调查,经统计男生与女生的人数之比为2:3,男生中有50人对桥牌有兴趣,女生中有20人对桥牌不感兴趣.
(1)完成2×2列联表,并回答能否有的把握认为“该校高一学生对桥牌是否感兴趣与性别有关”?
感兴趣 | 不感兴趣 | 合计 | |
男 | 50 | —— | —— |
女 | —— | 20 | —— |
合计 | —— | —— | 200 |
(2)从被调查的对桥牌有兴趣的学生中利用分层抽样抽取6名学生,再从6名学生中抽取2名学生作为桥牌搭档参加双人赛.求抽到一名男生与一名女生的概率.
附:参考公式,其中.
临界值表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |