题目内容
【题目】在锐角△ABC中,a=2,_______,求△ABC的周长l的范围.
在①(﹣cos,sin),(cos,sin),且,②cosA(2b﹣c)=acosC,③f(x)=cosxcos(x),f(A)
注:这三个条件中任选一个,补充在上面问题中并对其进行求解.
【答案】l△ABC∈(6+2,6].
【解析】
选①时,由平面向量的数量积与三角恒等变换求出A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围;
选②时,由正弦定理和三角恒等变换求出A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围;
选③时,由三角恒等变换求得A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围.
解:若选①,则由(﹣cos,sin),(cos,sin),且,
得,∴cosA,
又A∈(0,),
所以A;
又,所以,,
△ABC的周长为,
即;
因为锐角△ABC中,A,所以,,
所以B∈(,),
所以B∈(,),
所以△ABC的周长为l△ABC∈(6+2,6].
若选②,由cos A(2b﹣c)=acos C,
所以2bcosA=acosC+ccosA,
所以2sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB;
又B∈(0,π),所以sinB≠0,所以cosA;
又A∈(0,),所以A;
又,所以,,
△ABC的周长为,
即;
因为锐角△ABC中,A,所以,,
所以B∈(,),
所以B∈(,),
所以△ABC的周长为l△ABC∈(6+2,6].
若选③,则f(x)=cos xcos(x)
cos xsin x
(cos2xsin2x)
sin(2x),
又f(A),所以sin(2A),
又A∈(0,),所以A;
又,所以,,
△ABC的周长为,
即;
因为锐角△ABC中,A,所以,,
所以B∈(,),
所以B∈(,),
所以△ABC的周长为l△ABC∈(6+2,6].
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.