题目内容
【题目】已知点为抛物线的焦点,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.
(1)求证:直线过定点,并求出该定点的坐标;
(2)设直线交抛物线于,两点,试求的最小值.
【答案】(1)证明见解析,直线过定点(2)的最小值为.
【解析】
(1)设,,显然直线,的斜率是存在的,设直线的方程为,代入可得,可得出的中点坐标为,再根据,得的中点坐标为,再令得,
得出直线恒过点,验证,得,,三点共线,从而直线过的定点;
(2))由(1)设直线的方程为,代入可得,再设,,得韦达定理,,表示出,由二次函数得出线段的最小值.
(1)设,,
直线的方程为,代入可得,
则,故,
故的中点坐标为.
由,得,所以的中点坐标为.
令得,
此时,故直线过点,
当时,,.
所以,,,三点共线,
所以直线过定点.
(2)设,,直线的方程为,
代入可得,则,,
故
(当时,取等号).
故,当及直线垂直轴时,取得最小值.
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求的分布列及数学期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |