题目内容
【题目】已知椭圆:的左、右焦点分别为,,若椭圆经过点,且△PF1F2的面积为2.
(1)求椭圆的标准方程;
(2)设斜率为1的直线与以原点为圆心,半径为的圆交于A,B两点,与椭圆C交于C,D两点,且(),当取得最小值时,求直线的方程.
【答案】(1) ;(2).
【解析】
(1)根据的面积求得的值,再利用椭圆过点及,求得的值,从而求得椭圆的方程;
(2)设直线的方程为,由直线和圆、椭圆都相交,求得,再利用弦长公式分别计算,,从而建立的函数关系式,当取得最小值时,可求得的值,从而得到直线的方程.
解:(1)由的面积可得,即,∴.①
又椭圆过点,∴.②
由①②解得,,故椭圆的标准方程为.
(2)设直线的方程为,则原点到直线的距离,
由弦长公式可得.
将代入椭圆方程,得,
由判别式,解得.
由直线和圆相交的条件可得,即,也即,
设,,则,,
由弦长公式,得.
由,得.
∵,∴,则当时,取得最小值,
此时直线的方程为.
练习册系列答案
相关题目