题目内容
已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
(Ⅰ)(Ⅱ)单调递增区间为和,单调递减区间为(Ⅲ)
解析
已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;(2)是否存在一次函数y=kx+b(k,bR),使得f(x)≥kx十b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.
已知函数,函数是函数的导函数.(1)若,求的单调减区间;(2)若对任意,且,都有,求实数的取值范围;(3)在第(2)问求出的实数的范围内,若存在一个与有关的负数,使得对任意时恒成立,求的最小值及相应的值.
已知函数(1)若为的极值点,求的值;(2)若的图象在点处的切线方程为,①求在区间上的最大值;②求函数的单调区间.
已知函数f(x)=x3-ax-1.(1)若a=3时,求f(x)的单调区间;(2)若f(x)在实数集R上单调递增,求实数a的取值范围;(3)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由.
设函数f(x)=a2ln x-x2+ax,a>0.①求f(x)的单调区间;②求所有实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.
质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.
若,其中.(1)当时,求函数在区间上的最大值;(2)当时,若,恒成立,求的取值范围.