题目内容
质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.
运动开始后4秒时的动能为3 125 J
解析
已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
已知函数f(x)=ax--3ln x,其中a为常数.(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
一矩形铁皮的长为8 cm,宽为5 cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?
已知函数(e为自然对数的底数)(1)求函数的单调区间;(2)设函数,存在实数,使得成立,求实数的取值范围
已知函数(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;(2)判断函数f(x)的单调性;(3)求证:
已知函数f(x)=lnx+ax+1,a∈R.(1)求f(x)在x=1处的切线方程.(2)若不等式f(x)≤0恒成立,求a的取值范围.
已知.(1)若存在单调递减区间,求实数的取值范围;(2)若,求证:当时,恒成立;(3)利用(2)的结论证明:若,则.
已知直线y=kx是曲线y=ln x的切线,求k.