题目内容
若,其中.(1)当时,求函数在区间上的最大值;(2)当时,若,恒成立,求的取值范围.
(1)(2)
解析
设为实数,函数.(1)求的单调区间与极值; (2)求证:当且时,.
已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.
已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.
设函数f(x)=x2-(a-2)x-alnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值;(3)若方程f(x)=c有两个不相等的实数根x1、x2,求证:f′>0.
已知函数f(x)=,且f(x)的图象在x=1处与直线y=2相切.(1)求函数f(x)的解析式;(2)若P(x0,y0)为f(x)图象上的任意一点,直线l与f(x)的图象切于P点,求直线l的斜率k的取值范围.
已知函数f(x)=lnx-ax(a∈R).(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上的最小值.
已知函数f(x)=ax--3ln x,其中a为常数.(1)当函数f(x)的图象在点处的切线的斜率为1时,求函数f(x)在上的最小值;(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围;(3)在(1)的条件下,过点P(1,-4)作函数F(x)=x2[f(x)+3lnx-3]图象的切线,试问这样的切线有几条?并求出这些切线方程.
已知函数(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;(2)判断函数f(x)的单调性;(3)求证: