题目内容
【题目】已知函数.
⑴求函数的单调区间;
⑵如果对于任意的,总成立,求实数的取值范围.
【答案】(1)的单调递增区间为,单调递减区间为;(2)
【解析】
试题⑴求出函数的导数令其大于零得增区间,令其小于零得减函数;⑵令,要使总成立,只需时,对讨论,利用导数求的最小值.
试题解析:(1) 由于,所以
.
当,即时,;
当,即时,.
所以的单调递增区间为,
单调递减区间为.
(2) 令,要使总成立,只需时.
对求导得,
令,则,()
所以在上为增函数,所以.
对分类讨论:
① 当时,恒成立,所以在上为增函数,所以,即恒成立;
② 当时,在上有实根,因为在上为增函数,所以当时,,所以,不符合题意;
③ 当时,恒成立,所以在上为减函数,则,不符合题意.
综合①②③可得,所求的实数的取值范围是.
练习册系列答案
相关题目