题目内容
【题目】根据某电子商务平台的调查统计显示,参与调查的1 000位上网购物者的年龄情况如图所示.
(1)已知[30,40),[40,50),[50,60)三个年龄段的上网购物者人数成等差数列,求的值;
(2)该电子商务平台将年龄在[30,50)内的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和(单位:元)的分布列与数学期望.
【答案】(1);(2)见解析
【解析】
(1)根据题意三个年龄段的上网购物者人数成等差数列,列出方程组,即可求解;
(2)利用分层抽样的方法,从中取出三人,得出三人所获得代金券的总和的取值,求得相应的概率,列出分布列,利用期望的公式,即可求解.
(1)由题意知三个年龄段的上网购物者人数成等差数列,
所以,解得
.
(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人属于潜在消费人群的为4人,从中取出三人,并计算三人所获得代金券的总和,
则的所有可能取值为:
,
,
,
∴的分布列为
150 | 200 | 250 | 300 | |
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面列联表,并问是否有
的把握认为“两个分厂生产的零件的质量有差异”.
甲 厂 | 乙 厂 | 合计 | |
优质品 | |||
非优质品 | |||
合计 |
附: