题目内容
【题目】已知函数设表示p、q中的较大值,表示p、q中的较小值)记的最小值为A,的最大值为B,则A-B=
A. 16 B. -16 C. a2-2a-16 D. a2+2a-1
【答案】B
【解析】
在同一坐标系中画出f(x)与g(x)的图象,由图象及H1(x)的定义知H1(x)的最小值是f(a+2),H2(x)的最大值为g(a﹣2),进而可得答案.
f(x)=g(x),
即x2﹣2(a+2)x+a2=﹣x2+2(a﹣2)x﹣a2+8,
即x2﹣2ax+a2﹣4=0,
解得x=a+2或x=a﹣2.
f(x)与g(x)的图象如图.
由图象及H1(x)的定义知H1(x)的最小值是f(a+2),
H2(x)的最大值为g(a﹣2),
A﹣B=f(a+2)﹣g(a﹣2)
=(a+2)2﹣2(a+2)2+a2+(a﹣2)2﹣2(a﹣2)2+a2﹣8=﹣16.
故答案为:B
练习册系列答案
相关题目
【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
质量指标值 | |||||
频数 | 6 | 26 | 38 | 22 | 8 |
(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;
(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).
质量指标值分组 | 频数 | 频率 |
6 | 0.06 | |
合计 | 100 | 1 |