题目内容
【题目】已知曲线C1: (参数θ∈R),以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为 ,点Q的极坐标为 .
(1)将曲线C2的极坐标方程化为直角坐标方程,并求出点Q的直角坐标;
(2)设P为曲线C1上的点,求PQ中点M到曲线C2上的点的距离的最小值.
【答案】
(1)解: ,得 ,
故曲线C2的直角坐标方程为 ,
点Q的直角坐标为(4,4)
(2)解:设P(12cosθ,4sinθ),故PQ中点M(2+6cosθ,2+2sinθ),C2的直线方程为 ,
点M到C2的距离 =
= ,
PQ中点M到曲线C2上的点的距离的最小值是
【解析】(1)利用极坐标方程与直角坐标方程互化的方法,可得结论;(2)利用参数方程,结合三角函数知识,求PQ中点M到曲线C2上的点的距离的最小值.
练习册系列答案
相关题目
【题目】抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:
学生 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
甲 | 65 | 80 | 70 | 85 | 75 |
乙 | 80 | 70 | 75 | 80 | 70 |
则成绩较为稳定(方差较小)的那位学生成绩的方差为 .
【题目】某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:
单价(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求销量(件)关于单价(元)的线性回归方程;
(2)若单价定为10元,估计销量为多少件;
(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?
参考公式:,.参考数据:,