题目内容

已知△ABC的内角A、B、C的对边分别为a、b、c,
3
sinCcosC-cos2C=
1
2
,且c=3.
(1)求角C;
(2)若向量
m
=(1,sinA)
n
=(2,sinB)
共线,求a、b的值.
(1)∵
3
sinCcosC-cos2C=
1
2

3
2
sin2C-
1+cos2C
2
=
1
2

∴sin(2C-30°)=1
∵0°<C<180°
∴C=60°
(2)由(1)可得A+B=120°
m
=(1,sinA)
n
=(2,sinB)
共线,
∴sinB-2sinA=0
∴sin(120°-A)=2sinA
整理可得,cosA=
3
sinA
即tanA=
3
3

∴A=30°,B=90°
∵c=3.
∴a=
3
,b=2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网