题目内容
(本小题满分12分)已知四棱锥
的底面是边长为2的菱形,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238188699.gif)
.
(Ⅰ)若O是AC与BD的交点,求证:
平面
;
(Ⅱ)若点
是
的中点,求异面直线
与
所成角的余弦值.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602383291010.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238157347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238188699.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238204315.gif)
(Ⅰ)若O是AC与BD的交点,求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238235262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238251301.gif)
(Ⅱ)若点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238266327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238282240.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238298236.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238313364.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602383291010.gif)
(Ⅰ)证明略;
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238344341.gif)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238344341.gif)
(Ⅰ)连接AC与BD交于点O,连OP.
∵
,且O是AC和BD的中点,
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238391501.gif)
∴
平面
.
(Ⅱ)取
的中点
,连接
,则
,则
就是所求的角,根据题意得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238532725.gif)
所以,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386561026.gif)
故![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386721254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386882524.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602387032352.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238376460.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238391501.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238235262.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238251301.gif)
(Ⅱ)取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238438229.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238454211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238469368.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238500466.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238516425.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823160238532725.gif)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386561026.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386721254.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602386882524.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231602387032352.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目