题目内容
1.如图,在棱长为1的正四面体A-BCD中,平面α与棱AB,AD,CD,BC分别交于点E,F,G,H,则四边形EFGH周长的最小值为2.分析 将正四面体展开为平行四边形,如图形式,根据两点之间线段最短解答.
解答 解:将四面体展开为平面图形,即把面ADC沿着AD翻折到与面ADB共面上来,再到面DBC沿着BC翻折到面ABC中,再反这个面沿着AB翻折到面ADB中来,(其实就是得到四面体的展开图),当E,F,G,H四点在一条直线时,四面体中,四边形EFGH周长最小,最小值为2;如图
点评 本题考查了求几何体中折线最短的问题;关键是将空间问题转化为平面问题解决.
练习册系列答案
相关题目
12.某市人事部门引进4名优秀急缺专业类别的博士生甲、乙、丙、丁,经研究决定拟将他们分配到A、B、C三个单位,每个单位至少去一名,且甲不能A单位,则不同的分配方案有( )
A. | 24种 | B. | 12种 | C. | 48种 | D. | 36种 |
9.保持口腔卫生不仅对牙齿健康有好处,对预防早老性痴呆症(阿尔茨海默氏症)也是一个十分重要的因素,某市医疗工作人员对某社区人鱼进行了刷牙次数的统计,随机抽取了40人作为样本,得到这40人每月刷牙的次数,根据此数据得到频率分布表和频率分布直方图如下:
(1)求互表中p即图中a的值;
(2)若该社区有240人,试估计该社区每月刷牙次数在区间[10,15)内的人数;
(3)在所取样本中,从每月刷牙的次数不少于20次的人员中任选2人,求至多一人每月刷牙次数在区间[25,30)内的概率.
分组 | 频数 | 频率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | 4 | P |
[25,30) | 2 | 0.05 |
合计 | 40 | 1 |
(2)若该社区有240人,试估计该社区每月刷牙次数在区间[10,15)内的人数;
(3)在所取样本中,从每月刷牙的次数不少于20次的人员中任选2人,求至多一人每月刷牙次数在区间[25,30)内的概率.
16.如图为某几何体的三视图,图中四边形为边长为1的正方形,两条虚线互相垂直,则该几何体体积为( )
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |
18.已知$\overrightarrow{a}$是以点A(3,-1)为起点,且与$\overrightarrow{b}$=(-3,4)平行的单位向量,则$\overrightarrow{a}$的终点坐标是( )
A. | ($\frac{3}{5}$,-$\frac{4}{5}$)或(-$\frac{3}{5}$,$\frac{4}{5}$) | B. | ($\frac{5}{13}$,-$\frac{12}{13}$)或(-$\frac{5}{13}$,$\frac{12}{13}$) | ||
C. | ($\frac{12}{5}$,-$\frac{1}{5}$)或($\frac{18}{5}$,-$\frac{9}{5}$) | D. | ($\frac{12}{5}$,$\frac{1}{5}$)或($\frac{18}{5}$,$\frac{9}{5}$) |