题目内容
18.已知$\overrightarrow{a}$是以点A(3,-1)为起点,且与$\overrightarrow{b}$=(-3,4)平行的单位向量,则$\overrightarrow{a}$的终点坐标是( )A. | ($\frac{3}{5}$,-$\frac{4}{5}$)或(-$\frac{3}{5}$,$\frac{4}{5}$) | B. | ($\frac{5}{13}$,-$\frac{12}{13}$)或(-$\frac{5}{13}$,$\frac{12}{13}$) | ||
C. | ($\frac{12}{5}$,-$\frac{1}{5}$)或($\frac{18}{5}$,-$\frac{9}{5}$) | D. | ($\frac{12}{5}$,$\frac{1}{5}$)或($\frac{18}{5}$,$\frac{9}{5}$) |
分析 利用向量共线的充要条件求解即可.
解答 解:$\overrightarrow{a}$是以点A(3,-1)为起点,$\overrightarrow{b}$=(-3,4),$\left|\overrightarrow{b}\right|$=5,
由向量的平移可知与$\overrightarrow{b}$=(-3,4)平行的单位向量为:±$\frac{1}{5}$(-3,4),
$\overrightarrow{a}$的终点坐标是(x,y),可得(x-3,y+1)=±$\frac{1}{5}$(-3,4),
则$\overrightarrow{a}$的终点坐标是:($\frac{12}{5}$,-$\frac{1}{5}$)或($\frac{18}{5}$,-$\frac{9}{5}$)
故选:C.
点评 本题考查向量的基本知识的应用,考查计算能力.
练习册系列答案
相关题目
9.已知某高级中学高三学生有2000名,在第一次模拟考试中数学成绩ξ服从正态分布N(120,σ2),已知P(100<?<120)=0.45.若学校教研室欲按分层抽样的方式从中抽出100份试卷进行分析研究,则应从140分以上的试卷中抽( )
A. | 4份 | B. | 5份 | C. | 8份 | D. | 10份 |
6.某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下:
(1)若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率;
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,+∞) |
天数 | 6 | 12 | 22 | 30 | 14 | 16 |
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.
10.执行如图所示的程序框图,输出的S值为( )
A. | $\frac{2}{3}({4^{25}}-1)$ | B. | $\frac{2}{3}({4^{26}}-1)$ | C. | 250-1 | D. | 251-1 |
8.若函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,则使f(x)>3成立的x的取值范围为( )
A. | (-∞,-1) | B. | (-1,0) | C. | (0,1) | D. | (1,+∞) |