题目内容
16.已知tanθ=2,则$\frac{sinθ}{(sinθcosθ)^{3}}$=$±\frac{25\sqrt{5}}{4}$.分析 由tanθ=2分别求出sinθ和cosθ的值即可.
解答 解:由tanθ=2得sinθ=2cosθ,代入sin2θ+cos2θ=1得cos2θ=$\frac{1}{5}$,即cosθ=$±\frac{\sqrt{5}}{5}$,
则sinθ=±$\frac{2\sqrt{5}}{5}$,
则$\frac{sinθ}{(sinθcosθ)^{3}}$═$\frac{2cosθ}{8co{s}^{6}θ}$=$\frac{1}{4co{s}^{5}θ}$=$±\frac{25\sqrt{5}}{4}$,
故答案为:$±\frac{25\sqrt{5}}{4}$
点评 本题主要考查三角函数值的求解,利用同角的三角函数关系是解决本题的关键.
练习册系列答案
相关题目
8.如图,网格纸上小正方形的边长为1,粗实线画出的是某空间几何体的三视图,则该几何体的体积为( )
A. | 40 | B. | $\frac{80}{3}$ | C. | $\frac{10}{3}$ | D. | $\frac{16}{3}$ |