题目内容
【题目】设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线斜率;
(2)求函数的单调区间与极值.
【答案】(1)曲线y=f(x)在点(1,f(1))处的切线斜率为1
(2)f(x)在(-∞,1-m)和(1+m,+∞)内为减函数;最大值为f(1+m)=m3+m2-;最小值为f(1-m)=-m3+m2-
【解析】试题分析:(1)根据导数几何意义先求切线斜率f′(1),(2)先求导函数零点x=1-m或x=1+m.再列表分析导函数符号变化规律,确定单调区间及极值.
试题解析:(1)当m=1时,f(x)=- x3+x2,
f′(x)=-x2+2x,故f′(1)=1.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m或x=1+m.
因为m>0,所以1+m>1-m.
当x变化时,f′(x),f(x)的变化情况如下表:
所以f(x)在(-∞,1-m),(1+m,+∞)内是减函数,在(1-m,1+m)内是增函数.
函数f(x)在x=1-m处取得极小值f(1-m),且f(1-m)=- m3+m2-.
函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=m3+m2-.
【题目】下列四个命题中错误的是( )
A. 在一次试卷分析中,从每个考室中抽取第5号考生的成绩进行统计,不是简单随机抽样
B. 对一个样本容量为100的数据分组,各组的频数如下:
区间 | ||||||||
频数 | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估计小于29的数据大约占总体的
C. 设产品产量与产品质量之间的线性相关系数为,这说明二者存在着高度相关
D. 通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如表列联表.
由,则有以上的把握认为“选择过马路方式与性别有关”
【题目】调查在级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船
(1)作出性别与晕船关系的列联表;
(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为级风的海上航行中晕船与性别有关?
晕船 | 不晕船 | 总计 | |
男人 | |||
女人 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |