题目内容

12.掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow{a}$=(m,n)与向量$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$]的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{5}{6}$

分析 由已知掷两次骰子得到的点数分别为m和n,记为(m,n),共有36种可能,而由数量积则θ∈(0,$\frac{π}{2}$]的,n范围是m-n≥0并且m+n≠0,由几何概型公式得到所求.

解答 解:解:连掷两次骰子得到的点数分别为m和n,记(m,n)有:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件
若θ∈(0,$\frac{π}{2}$],则m≥n,则满足条件的(m,n)有:
(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)
(4,1),(4,2),(4,3),(4,4),(5,1),(5,2)
(5,3),(5,4),(5,5),(6,1),(6,2),(6,3)
(6,4),(6,5),(6,6),共21个基本事件
则P=$\frac{21}{36}=\frac{7}{12}$;
故选C.

点评 本题主要考查古典概型概率求法,用到了用两个向量的数量积表示两个向量的夹角;解答本题的关键是明确概率模型,分别求出所有事件以及满足条件的事件个数,利用公式解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网