题目内容
【题目】如图所示,在多面体中,平面,,点在上,点是的中点,且,且.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)取的中点为,连接、,根据等比三角形的性质可得,由线面垂直的性质定理可得,进而证出,利用线面垂直的判定定理可得平面,再由题意可得,,,可得,即得证.
(Ⅱ)以点为坐标原点,以以及的垂线,为轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,利用空间向量的数量积即可求出二面角.
(Ⅰ)如图,取的中点为,连接、.
在中,因为,所以.
因为平面,平面,所以.
而,所以.
由于,所以平面.
点、是边、的中点,所以,.
又因为,,所以∥,
因此四边形是平行四边形,,故平面.
(Ⅱ)如图,以点为坐标原点,分别以以及的垂线,为轴,
建立空间直角坐标系.
则,,,,.
于是,.
设是平面的一个法向量,
则由,,得,
取.
同理可求出平面的一个法向量.
于是.
故二面角的余弦值是.
【题目】某村为了脱贫致富,引进了两种麻鸭品种,一种是旱养培育的品种,另一种是水养培育的品种.为了了解养殖两种麻鸭的经济效果情况,从中随机抽取500只麻鸭统计了它们一个季度的产蛋量(单位:个),制成了如图的频率分布直方图,且已知麻鸭的产蛋量在的频率为0.66.
(1)求,的值;
(2)已知本次产蛋量近似服从(其中近似为样本平均数,似为样本方差).若本村约有10000只麻鸭,试估计产蛋量在110~120的麻鸭数量(以各组区间的中点值代表该组的取值).
(3)若以正常产蛋90个为标准,大于90个认为是良种,小于90个认为是次种.根据统计得出两种培育方法的列联表如下,请完成表格中的统计数据,并判断是否有99.5%的把握认为产蛋量与培育方法有关.
良种 | 次种 | 总计 | |
旱养培育 | 160 | 260 | |
水养培育 | 60 | ||
总计 | 340 | 500 |
附:,则,,.
,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |