题目内容

【题目】已知椭圆 的焦点坐标分別为,,为椭圆上一点,满足

(1) 求椭圆的标准方程:

(2) 设直线与椭圆交于两点,点,若的取值范围.

【答案】(1);(2)

【解析】分析:第一问首先根据题中条件将涉及到的量设出来,之后结合椭圆的定义以及对应的线段的倍数关系,求得对应的边长,利用余弦定理借用余弦值建立边之间的等量关系式,从而求得的值,借用椭圆中的关系,求得b的值,从而求得椭圆的方程,第二问将直线的方程与椭圆的方程联立,求得两根和与两根积,从而求得线段的中点,利用条件可得垂直关系,建立等量关系式,借用判别式大于零找到其所满足的不等关系,求得k的取值范围.

详解:(1)由题意设,又

中,由余弦定理得,

解得所求椭圆方程为

(2)联立方程,消去

,且…①

的中心为,则

,,即, ,解得…②

把②代入①得,整理得,即

解得

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网