题目内容
【题目】对于无穷数列和函数
,若
,则称
是数列
的母函数.
(Ⅰ)定义在上的函数
满足:对任意
,都有
,且
;又数列
满足
.
(1)求证: 是数列
的母函数;
(2)求数列的前项
和
.
(Ⅱ)已知是数列
的母函数,且
.若数列
的前
项和为
,求证:
.
【答案】(Ⅰ)(1)证明见解析;(2) ;(Ⅱ)证明见解析.
【解析】试题分析:
(Ⅰ)(1)由题意结合母函数的定义即可证得结论;
(2)由题意错位相减可得;
(Ⅱ)由题意结合不等式的特点即可证得题中的结论.
试题解析:
(Ⅰ)(1)由题知,且
.
是数列
的母函数;
(2) 由(1) 知: 是首项和公差均为
的等差数列,故
.
①
②
两式相减得: .
.
(Ⅱ)由题知: ,
.
.
从而是以
为首项,
为公比的等比数列
又
故当时
.

练习册系列答案
相关题目
【题目】第十二届全国人民代表大会第五次会议和政协第十二届全国委员会第五次会议(简称两会)分别于2017年3月5日和3月3日在北京开幕,某高校学生会为了解该校学生对全国两会的关注情况,随机调查了该校200名学生,并将这200名学生分为对两会“比较关注”与“不太关注”两类,已知这200名学生中男生比女生多20人,对两会“比较关注”的学生中男生人数比女生人数之比为,对两会“不太关注”的学生中男生比女生少5人.
(Ⅰ)根据题意建立的列联表,并判断是否有
的把握认为男生与女生对两会的关注有差异?
(Ⅱ)该校学生会从对两会“比较关注”的学生中根据性别进行分层抽样,从中抽取7人,再从这7人中随机选出2人参与两会宣传活动,求这2人全是男生的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,
.