题目内容
【题目】已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点P ,图象与P点最近的一个最高点坐标为 .
(1)求函数解析式;
(2)求函数的最大值,并写出相应的x的值;
(3)求使y≤0时,x的取值范围.
【答案】(1) (2) (3)
【解析】试题分析:(1)由最高点可得A=5,由图象与P点最近的距离可得四分之一个周期,解得ω,最后根据最大值求φ(2)由正弦函数性质确定最大值取法: ,解方程可得x的值;(3)利用正弦函数性质解三角不等式可得2kπ-π≤2x- ≤2kπ,即得x的取值范围.
试题解析:解:(1)由题意知=-=,∴T=π.
∴ω==2,由ω·+φ=0,得φ=-,又A=5,
∴y=5sin.
(2)函数的最大值为5,此时2x-=2kπ+ (k∈Z).∴x=kπ+ (k∈Z)
(3)∵5sin≤0,
∴2kπ-π≤2x-≤2kπ(k∈Z).
∴kπ-≤x≤kπ+ (k∈Z).
练习册系列答案
相关题目
【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
频率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为,等级系数为5的2件日用品记为,现从, 这5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.