题目内容
【题目】已知函数f(x)=x2+tx+1(其中实数t>0).
(1)已知实数x1,x2∈[﹣1,1],且x1<x2.若t=3,试比较x1f(x1)+x2f(x2)与x1f(x2)+x2f(x1)的大小关系,并证明你的结论;
(2)记g(x),若存在非负实数x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值为8,求实数t的取值范围.
【答案】(1)x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);见解析(2)[22,25).
【解析】
(1)利用作差比较法,结合函数f(x)的单调性进行求解即可;
(2)存在非负实数x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值为8,因此有成立,求出g(x)的表达式,利用基本不等式,分类讨论求出的最值,最后求出实数t的取值范围.
(1)x1f(x1)+x2f(x2)﹣x1f(x2)﹣x2f(x1)=(x1﹣x2)(f(x1)﹣f(x2)),
∵t=3,
∴f(x)=x2+3x+1在[﹣1,1]上单调递增,
由x1,x2∈[﹣1,1],且x1<x2知,f(x1)<f(x2),
∴(x1﹣x2)(f(x1)﹣f(x2))>0,
∴x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);
(2)∵存在非负实数x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值为8,
∴,
下面求的最值,
当x=0时,g(0)=1;
当x>0时,,
∵,
∴,
①当t=1时,g(x)=1,不合题意;
②当0<t<1时,,故函数g(x)的值域为,
可得,解得(不符,舍去);
③当t>1时,,故函数g(x)的值域为,
可得,解得22≤t<25;
综上所述,实数t的取值范围为[22,25).
【题目】在“互联网+”时代的今天,移动互联快速发展,智能手机(Smartphone)技术不断成熟,尤其在5G领域,华为更以件专利数排名世界第一,打破了以往由美、英、日垄断的前三位置,再次荣耀世界,而华为的价格却不断下降,远低于苹果;智能手机成为了生活中必不可少的工具,学生是对新事物和新潮流反应最快的一个群体之一,越来越多的学生在学校里使用手机,为了解手机在学生中的使用情况,对某学校高二年级名同学使用手机的情况进行调查,针对调查中获得的“每天平均使用手机进行娱乐活动的时间”进行分组整理得到如下的数据:
使用时间(小时) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% | 12% | 2% |
(1)求表中的值;
(2)从该学校随机选取一名同学,能否根据题目中所给信息估计出这名学生每天平均使用手机进行娱乐活动小于小时的概率?若能,请算出这个概率;若不能,请说明理由;
(3)若从使用手机小时和小时的两组中任取两人,调查问卷,看看他们对使用手机进行娱乐活动的看法,求这人都使用小时的概率.