题目内容
【题目】如图,四边形是边长为3的菱形,平面.
(1)求证:平面;
(2)若与平面所成角为,求二面角的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;
(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂直知与平面所成角为,这样可计算出的长,写出各点坐标,求出平面的法向量,由法向量夹角可得二面角.
证明:(1)因为平面,平面,所以.
因为四边形是菱形,所以.
又因为,平面,平面,
所以平面.
解:(2)据题设知,两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,
因为与平面所成角为,即,所以
又,所以,
所以
所以
设平面的一个法向量,则令,则.
因为平面,所以为平面的一个法向量,且
所以,
.
所以二面角的正弦值为.
练习册系列答案
相关题目