题目内容
【题目】已知函数,,使得对任意两个不等的正实数,都有恒成立.
(1)求的解析式;
(2)若方程有两个实根,且,求证:.
【答案】(1);(2)证明见解析.
【解析】
(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;
(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.
(1)根据题意,对任意两个不等的正实数,都有恒成立.
则在上单调递减,
因为,
当时,在内单调递减.,
当时,由,有,
此时,当时,单调递减,
当时,单调递增,
综上,,所以.
(2)由为方程的两个实根,
得,
两式相减,可得,
因此,
令,由,得,
则,
构造函数.
则,
所以函数在上单调递增,
故,
即, 可知,
故,命题得证.
练习册系列答案
相关题目
【题目】袋子中有四张卡片,分别写有“学、习、强、国”四个字,有放回地从中任取一张卡片,将三次抽取后“学”“习”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率,利用电脑随机产生整数0,1,2,3四个随机数,分别代表“学、习、强、国”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 210 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件发生的概率为( )
A.B.C.D.