题目内容
【题目】已知函数.其中是自然对数的底数.
(1)求函数在点处的切线方程;
(2)若不等式对任意的恒成立,求实数的取值范围.
【答案】(1);
(2).
【解析】
(1)利用导数的几何意义求出切线的斜率,再求出切点坐标即可得在点处的切线方程;
(2)令,然后利用导数并根据a的情况研究函数的单调性和最值.
(1),,
∴,
又,
∴切线方程为,即.
(2)令,
,
①若,则在上单调递减,又,
∴恒成立,∴在上单调递减,又,
∴恒成立.
②若,令,
∴,易知与在上单调递减,
∴在上单调递减,,
当即时,在上恒成立,
∴在上单调递减,即在上单调递减,
又,∴恒成立,∴在上单调递减,
又,∴恒成立,
当即时,使,
∴在递增,此时,∴,
∴在递增,∴,不合题意.
综上,实数的取值范围是.
练习册系列答案
相关题目