题目内容
【题目】如图,在四棱锥中,,,,且,.
(1)证明:平面;
(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.
【答案】(1)见证明 (2)见解析
【解析】
(1)推导出AB⊥AC,AP⊥AC,AB⊥PC,从而AB⊥平面PAC,进而PA⊥AB,由此能证明PA⊥平面ABCD;
(2)以A为原点,AB为x轴,AC为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出在线段PD上,存在一点M,使得二面角M﹣AC﹣D的大小为60°,4﹣2.
(1)∵在底面中,,
且
∴,∴
又∵,,平面,平面
∴平面 又∵平面 ∴
∵, ∴
又∵,,平面,平面
∴平面
(2)方法一:在线段上取点,使 则
又由(1)得平面 ∴平面
又∵平面 ∴ 作于
又∵,平面,平面
∴平面 又∵平面 ∴
又∵ ∴是二面角的一个平面角
设 则,
这样,二面角的大小为
即
即
∴满足要求的点存在,且
方法二:取的中点,则、、三条直线两两垂直
∴可以分别以直线、、为、、轴建立空间直角坐标系
且由(1)知是平面的一个法向量
设 则,
∴,
设是平面的一个法向量
则 ∴
令,则,它背向二面角
又∵平面的法向量,它指向二面角
这样,二面角的大小为
即
即
∴满足要求的点存在,且
【题目】为迎接年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核. 记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了名学生的考核成绩,并作成如下茎叶图:
5 | 0 | 1 | 1 | 6 | ||||
6 | 0 | 1 | 4 | 3 | 3 | 5 | 8 | |
7 | 2 | 3 | 7 | 6 | 8 | 7 | 1 | 7 |
8 | 1 | 1 | 4 | 5 | 2 | 9 | ||
9 | 0 | 2 | 1 | 3 | 0 |
(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核成绩为优秀的概率;
(Ⅱ)从图中考核成绩满足的学生中任取人,求至少有一人考核优秀的概率;
(Ⅲ)记表示学生的考核成绩在区间内的概率,根据以往培训数据,规定当时培训有效. 请你根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.