题目内容
【题目】已知函数.
(1)当时,求证:恒成立;
(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.
【答案】(1)见证明;(2)3
【解析】
(1)当时,,求导,研究函数单调性,求最值,证明不等式;(2)将方程转化为,构造函数,求导数,研究函数单调性及取值范围,数形结合得的最小值
(1)证明:当时,,,
令,所以当时,,单调递增;
当时,,单调递减.
故,所以.
(2) 至少有两个根,
记,所以,
记,所以,
令舍)
所以当,,单调递减,时,,
单调递增,所以的最小值为
,
又,所以时,,
又当时, ,因此必存在唯一的
,使得.
因此时,,单调递増,,,单调递减,时,,单调递増,画出的大致图象,如图所示
因此当时,与至少有两个交点,
所以的最小值为.
练习册系列答案
相关题目
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的平均值和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |