题目内容
【题目】已知函数f(x)=ax2+(x﹣1)ex .
(1)当a=﹣ 时,求f(x)在点P(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)当﹣ <a<﹣ 时,f(x)是否存在极值?若存在,求所有极值的和的取值范围.
【答案】
(1)解:当a= 时,f(x)= x2+(x﹣1)ex,
∴f(1)= ,
f′(x)=﹣(e+1)x+xex,∴f′(1)=﹣1
切线方程为:y+ =﹣(x﹣1),
即:2x+2y+e﹣1=0
(2)解:f′(x)=2ax+xex=x(ex+2a)
①当2a≥0即a≥0时,f(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增;
②当﹣ <a<0时,f(x)在(﹣∞,ln(﹣2a))上单调递增,
在(ln(﹣2a),0)上单调递减,在(0,+∞)上单调递增;
③当a=﹣ 时,f(x)在(﹣∞,+∞)上单调递增;
④当a<﹣ 时,f(x)在(﹣∞,0))上单调递增,
在(0,ln(﹣2a))上单调递减,在(ln(﹣2a),+∞)上单调递增
(3)解:由(2)知,当﹣ <a<﹣ <0时,
f(x)在(﹣∞,ln(﹣2a))上单调递增,在(ln(﹣2a),0)上单调递减,在(0,+∞)上单调递增,
∴x1=ln(﹣2a)为极大值点,x2=0为极小值点,所有极值的和即为f(x1)+f(x2),
f(x1)+f(x2)=ax12+(x1﹣1) ﹣1
∵x1=ln(﹣2a),∴a=﹣ ,
∴f(x1)+f(x2)=﹣ x12+(x1﹣1) ﹣1= (﹣ x12+x1﹣1)﹣1
∵﹣ <a<﹣ ,∴ <﹣2a<1,∴﹣1<x1=ln(﹣2a)<0,
令(x)=ex (﹣ x2+x﹣1)﹣1(﹣1<x<0)
∴′(x)=ex (﹣ x2)<0∴(x)在(﹣1,0)单调递减
∴(0)<(x)<(﹣1)
即﹣2<(x)<﹣ ﹣1
∴所有极值的和的取值范围为(﹣2,﹣ )
【解析】(1)当a= 时,求出f′(x)=﹣(e+1)x+xex , 利用导数的几何意义能出f(x)在点P(1,f(1))处的切线方程.(2)f′(x)=2ax+xex=x(ex+2a),由此根据a≥0,﹣ <a<0,a=﹣ ,a<﹣ ,利用导数性质能讨论f(x)的单调性.(3)推导出x1=ln(﹣2a)为极大值点,x2=0为极小值点,所有极值的和即为f(x1)+f(x2),f(x1)+f(x2)=ax12+(x1﹣1) ﹣1,由此利用导性质能求出所有极值的和的取值范围.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.