题目内容
【题目】在正方体ABCDA1B1C1D1中,M为DD1的中点,O为四边形ABCD的中心,P为棱A1B1上任一点,则异面直线OP与MA所成的角为( )
A.30°
B.45°
C.60°
D.90°
【答案】D
【解析】解:∵A1B1⊥面ADD1A1 , AM面ADD1A1 , ∴A1B1⊥AM.
设点O与A1B1确定的平面为α,α∩AD=F且α∩BC=E,则F、E为AD、BC的中点,
根据正方形的性质,可得AM⊥A1F.
∵A1F∩A1B1=A1 , A1F、A1B1平面面A1FEB1 , ∴AM⊥面A1FEB1 ,
又∵OP面A1FEB1 , ∴AM⊥OP.
即直线OP与直线AM所成的角是90°.
故选:D
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
【题目】随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:
分组 | 频数 | 频率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)确定样本频率分布表中n1 , n2 , f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.