题目内容

【题目】为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.

(1)求该边远山区某户居民月用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(2)已知该边远山区贫困户的月用电量(单位:度)与该户长期居住的人口数(单位:人)间近似地满足线性相关关系:的值精确到整数),其数据如表:

14

15

17

18

161

168

191

200

现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿为用电量)元,请根据家庭人数分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?

附:回归直线中斜率和截距的最小二乘法估计公式分别为:

.

参考数据:.

【答案】(1);(2)见解析

【解析】分析:(1)由电价分三个“阶梯”,利用分段函数求出解析式即可;(2)先利用最小二乘法求出回归方程第一种方案人每月补偿元,第二种方案人每月补偿为

,由,令,解得,从而可得结果.

详解(1)当时,

时,

时,

关于的解析式为.

(2)由

所以回归直线方程为.

第一种方案人每月补偿元,第二种方案人每月补偿为

,由

,解得

∴当人数不超过5人时,选择第二种补偿方式可获得更多补偿;当人数超过5人时,选择第一种补偿方式可获得更多补偿.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网