题目内容
【题目】在四棱锥中,平面平面,底面为矩形,,,,、分别为线段、上一点,且,.
(1)证明:;
(2)证明:平面,并求三棱锥的体积.
【答案】(1)见解析; (2)1.
【解析】
(1)推导出AM⊥AD,从而AM⊥平面ABCD,由此能证明AM⊥BD;(2)推导出CE=ND,BC∥AD,EN∥AB,FN∥AM,从而平面ENF∥平面MAB,进而EF∥平面MAB,由VD﹣AEF=VF﹣ADE,能求出三棱锥D﹣AEF的体积.
(1)∵AM=AD=3,MD=3,
∴AM2+AD2=MD2,∴AM⊥AD,
∵平面MAD⊥平面ABCD,平面MAD∩平面ABCD=AD,
∴AM⊥平面ABCD,
又BD平面ABCD,∴AM⊥BD.
(2)在棱AD上取一点N,使得ND=1,
∵CE=1,∴CE=ND,又BC∥AD,
∴ECND,又AB∥CD,∴EN∥AB,
∵=,∴FN∥AM,
∵FN∩EN=N,∴平面ENF∥平面MAB,又EF平面ENF,
∴EF∥平面MAB,
∵AM⊥平面ABCD,且FD=MD,AM=3,
∴F到平面ABCD的距离d=,
∴VD﹣AEF=VF﹣ADE==1.
【题目】某鲜花店每天制作、两种鲜花共束,每束鲜花的成本为元,售价元,如果当天卖不完,剩下的鲜花作废品处理.该鲜花店发现这两种鲜花每天都有剩余,为此整理了过往100天这两种鲜花的日销量(单位:束),得到如下统计数据:
种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 25 | 35 | 20 | 20 |
两种鲜花日销量 | 48 | 49 | 50 | 51 |
天数 | 40 | 35 | 15 | 10 |
以这100天记录的各销量的频率作为各销量的概率,假设这两种鲜花的日销量相互独立.
(1)记该店这两种鲜花每日的总销量为束,求的分布列.
(2)鲜花店为了减少浪费,提升利润,决定调查每天制作鲜花的量束.以销售这两种鲜花的日总利润的期望值为决策依据,在每天所制鲜花能全部卖完与之中选其一,应选哪个?