题目内容

((本小题满分12分)
已知几何体的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:

(1)异面直线所成角的余弦值;
(2)二面角的正弦值;
(3)此几何体的体积的大小.

解:方法一(1)取EC的中点是F,连结BF
BF//DE,∴∠FBA或其补角即为异面直线DEAB所成的角.
在△BAF中,AB=BF=AF=.∴
∴异面直线DEAB所成的角的余弦值为.………………4分
(2)AC⊥平面BCE,过CCGDEDEG,连AG
可得DE⊥平面ACG,从而AGDE
∴∠AGC为二面角A-ED-B的平面角.
在△ACG中,∠ACG=90°,AC=4,CG=
.∴
∴二面角AEDB的正弦值为.………………8分
(3)
∴几何体的体积V为16.………………12分
方法二:(坐标法)(1)以C为原点,以CA,CB,CE所在直线为x,y,z轴建立空间直角坐标系.
则A(4,0,0),B(0,4,0),D(0,4,2),E(0,0,4)
,∴
∴异面直线DE与AB所成的角的余弦值为.…………4分
(2)平面BDE的一个法向量为
设平面ADE的一个法向量为


从而,令
,
∴二面角A-ED-B的的正弦值为.………………8分
(3),∴几何体的体积V为16.………………12分

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网