题目内容

【题目】如图所示,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=8,AD=4,AB=2DC=4
(1)设M是PC上的一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P﹣ABCD的体积.

【答案】
(1)证明:在△ABD中,∵AD=4,AB=4 ,BD=8,

∴AD2+BD2=AB2

∴AD⊥BD.

又∵面PAD⊥面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,

∴BD⊥面PAD,

又BD面BDM,

∴面MBD⊥面PAD


(2)解:过P作PO⊥AD,

∵面PAD⊥面ABCD,面PAD∩面ABCD=AD,PO平面PAD,

∴PO⊥面ABCD,

即PO为四棱锥P﹣ABCD的高.

又△PAD是边长为4的等边三角形,

∴PO=2

过D作DN⊥AB,则DN= =

∴S梯形ABCD= ×(2 +4 )× =24,

∴VPABCD= =16


【解析】(1)利用勾股定理逆定理可得AD⊥BD,根据面面垂直的性质得出BD⊥平面PAD,故而平面BDM⊥平面PAD;(2)过P作PO⊥AD,则PO⊥平面ABCD,求出梯形ABCD的高和棱锥的高PO,代入棱锥的体积公式计算即可.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网