题目内容
【题目】冠状病毒是一个大型病毒家族,已知的有中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重的疾病,新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株,某小区为进一步做好新型冠状病毒肺炎疫情知识的教育,在小区内开展“新型冠状病毒防疫安全公益课”在线学习,在此之后组织了“新型冠状病毒防疫安全知识竞赛”在线活动.已知进入决赛的分别是甲、乙、丙、丁四位业主,决赛后四位业主相应的名次为第1,2,3,4名,该小区为了提高业主们的参与度和重视度,邀请小区内的所有业主在比赛结束前对四位业主的名次进行预测,若预测完全正确将会获得礼品,现用a,b,c,d表示某业主对甲、乙、丙、丁四位业主的名次做出一种等可能的预测排列,记X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求该业主获得礼品的概率;
(2)求X的分布列及数学期望.
【答案】(1);(2)分布列见解析,.
【解析】
(1)求得该业主预测的结果的总数,其中预测完全正确的结果只有1种,利用古典概型及概率的计算公式,即可求解;
(2)以(a,b,c,d)为一个基本事件,用列举法逐一写出每种情况,得到随机变量的取值,求得相应的概率,即可求得随机变量的分布列,利用公式求得数学期望.
(1)由题意,该业主预测的结果有种可能,预测完全正确的结果只有1种,
所以该业主获奖的概率为.
(2)以(a,b,c,d)为一个基本事件,如下表所示:
(a,b,c,d) | X | (a,b,c,d) | X | (a,b,c,d) | X |
(1,2,3,4) | 0 | (2,3,1,4) | 4 | (3,4,1,2) | 8 |
(1,2,4,3) | 2 | (2,3,4,1) | 6 | (3,4,2,1) | 8 |
(1,3,2,4) | 2 | (2,4,1,3) | 6 | (4,1,2,3) | 6 |
(1,3,4,2) | 4 | (2,4,3,1) | 6 | (4,1,3,2) | 6 |
(1,4,2,3) | 4 | (3,1,2,4) | 4 | (4,2,1,3) | 6 |
(1,4,3,2) | 4 | (3,1,4,2) | 6 | (4,2,3,1) | 6 |
(2,1,3,4) | 2 | (3,2,1,4) | 4 | (4,3,1,2) | 8 |
(2,1,4,3) | 4 | (3,2,4,1) | 6 | (4,3,2,1) | 8 |
所以随机变量的所有可能的取值为,
可得
所以随机变量X的分布列如表:
0 | 2 | 4 | 6 | 8 | |
|
所以数学期望E(X).
【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:
每周累积户外暴露时间(单位:小时) | 不少于28小时 | ||||
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |