题目内容
【题目】如图,在四棱锥中,,,,和均为边长为的等边三角形.
(1)求证:平面平面;
(2)求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】
(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.
(1)取的中点,连接,
因为均为边长为的等边三角形,
所以,,且
因为,所以,所以,
又因为,平面,平面,
所以平面.
又因为平面,所以平面平面.
(2)因为,为等边三角形,
所以,又因为,所以,,
在中,由正弦定理,得:,所以.
以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,
则,,,,,
设平面的法向量为,
则,即,
令,则平面的一个法向量为,
依题意,平面的一个法向量
所以
故二面角的余弦值为.
练习册系列答案
相关题目