题目内容

已知为抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,最小值为8.
(1)求该抛物线的方程;
(2)若直线与抛物线交于两点,求的面积.
(1).(2)

试题分析:(1)设为点的距离,则由抛物线定义,
所以当点为过点且垂直于准线的直线与抛物线的交点时,
取得最小值,即,解得 
∴抛物线的方程为
(2)设,联立
显然 

.  
到直线的距离为,

点评:中档题,涉及“抛物线内一定点,点为抛物线上一动点,求最小值”问题,往往利用抛物线定义,“化折为直”。涉及抛物线与直线位置关系问题,往往利用韦达定理。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网