ÌâÄ¿ÄÚÈÝ
3£®»¯¼ò£º£¨1£©f£¨x£©=$\frac{cos2x}{sinx+cosx}$+2sinx£»
£¨2£©f£¨x£©=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$-$\frac{1}{2}$£»
£¨3£©f£¨x£©=sin2£¨$\frac{¦Ð}{4}$+x£©-$\frac{\sqrt{3}}{2}$cos2x£»
£¨4£©f£¨x£©=sin£¨$\frac{¦Ðx}{4}$-$\frac{¦Ð}{4}$£©-2cos2$\frac{¦Ðx}{8}$+1£®
·ÖÎö ÓÉÌõ¼þÀûÓÃÈý½Çº¯ÊýµÄºãµÈ±ä»»»¯¼òËù¸øʽ×ÓµÄÖµ£¬¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©f£¨x£©=$\frac{cos2x}{sinx+cosx}$+2sinx=$\frac{{cos}^{2}x{-sin}^{2}x}{cosx+sinx}$+2sinx=cosx-sinx+2sinx=cosx+sinx=$\sqrt{2}$cos£¨x+$\frac{¦Ð}{4}$£©£®
£¨2£©f£¨x£©=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx=sin£¨x+$\frac{¦Ð}{6}$£©£®
£¨3£©f£¨x£©=sin2£¨$\frac{¦Ð}{4}$+x£©-$\frac{\sqrt{3}}{2}$cos2x=$\frac{1-cos£¨\frac{¦Ð}{2}+2x£©}{2}$-$\frac{\sqrt{3}}{2}$cos2x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x+$\frac{1}{2}$=sin£¨2x-$\frac{¦Ð}{3}$£©+$\frac{1}{2}$£®
£¨4£©f£¨x£©=sin£¨$\frac{¦Ðx}{4}$-$\frac{¦Ð}{4}$£©-2cos2$\frac{¦Ðx}{8}$+1=sin£¨$\frac{¦Ðx}{4}$-$\frac{¦Ð}{4}$£©-cos$\frac{¦Ð}{4}$x=sin$\frac{¦Ðx}{4}$cos$\frac{¦Ð}{4}$-cos$\frac{¦Ð}{4}$xsin$\frac{¦Ð}{4}$-cos$\frac{¦Ð}{4}$x
=$\frac{\sqrt{2}}{2}$sin$\frac{¦Ð}{4}$x-$\frac{1+\sqrt{2}}{2}$cos$\frac{¦Ð}{4}x$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýµÄºãµÈ±ä»»¼°»¯¼òÇóÖµ£¬ÊôÓÚÖеµÌ⣮