搜索
题目内容
双曲线
+
=1的离心率
,则
的值为
.
试题答案
相关练习册答案
-32
试题分析:由题意可得,a=2,又∵e=
=3,∴c=3a=6,∴b
2
=c
2
-a
2
=36-4=32,而k=-b
2
,∴k=-32
练习册系列答案
名校课堂系列答案
西城学科专项测试系列答案
小考必做系列答案
小考实战系列答案
小考复习精要系列答案
小考总动员系列答案
小升初必备冲刺48天系列答案
68所名校图书小升初高分夺冠真卷系列答案
伴你成长周周练月月测系列答案
小升初金卷导练系列答案
相关题目
已知椭圆
的离心率
,且直线
是抛物线
的一条切线.
(1)求椭圆的方程;
(2)点P
为椭圆上一点,直线
,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线
于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.
如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面升高1米后,拱桥内水面宽度是多少米?
已知双曲线
(
)的焦距为
,右顶点为
,抛物线
的焦点为
,若双曲线截抛物线的准线所得线段长为
,且
,则双曲线的渐近线方程为___________.
设
、
是关于
的方程
的两个不等实根,则过
,
两点的直线与双曲线
的公共点的个数为( )
A.0
B.1
C.2
D.3
已知P是圆
上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当
时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,
为定值?若存在,求出定点和定值;若不存在,请说明理由.
已知椭圆
的左右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直于直线
于点P,线段
的垂直平分线与
的交点的轨迹为曲线
,若
是
上不同的点,且
,则
的取值范围是( )
A.
B.
C.
D.以上都不正确
(本题满分13分)如图,分别过椭圆
:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点,直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆
的方程;
(2)是否存在定点
,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.
设双曲线
-
=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
=λ
+μ
(λ,μ∈R),λμ=
,则该双曲线的离心率为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总