题目内容
1.解不等式:x(10x2-9)>0.分析 通过讨论x的范围,得到不等式组,解出即可.
解答 解:原不等式可化为:
$\left\{\begin{array}{l}{x>0}\\{1{0x}^{2}-9>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{1{0x}^{2}-9<0}\end{array}\right.$,
解得:x>$\frac{3\sqrt{10}}{10}$或x<-$\frac{3\sqrt{10}}{10}$.
点评 本题考查了不等式的解法,考查一元二次不等式问题,是一道基础题.
练习册系列答案
相关题目
16.在同一坐标系中,将曲线y=2sin3x变为曲线y=sinx的伸缩变换是( )
A. | $\left\{{\begin{array}{l}{x=3{x^/}}\\{y=\frac{1}{2}{y^/}}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=\frac{1}{2}y}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=3{x^/}}\\{y=2{y^/}}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=2y}\end{array}}\right.$ |
10.直角梯形ABCD,满足AB⊥AD,CD⊥AD,AB=2AD=2CD=2现将其沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC体积取最大值时其外接球的体积为( )
A. | $\frac{{\sqrt{3}π}}{2}$ | B. | $\frac{4}{3}π$ | C. | 3π | D. | 4π |