题目内容

【题目】某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口.

(1)若窗口ABCD为正方形,且面积大于 m2(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为6m,求窗口ABCD面积的最大值.

【答案】
(1)解:设一根木条长为xcm,则正方形的边长为2 =

∵SABCD

∴4﹣x2

∴x<

∵四根木条将圆分成9个区域,

∴x>

∴4 <x<2


(2)解:设AB所在木条长为am,CD所在木条长为bm,

由条件,2a+2b=6,则a+b=3,

∵a,b∈(0,2),

∴b=3﹣a∈(0,2),∴a,b∈(1,2).

∵AB=2 ,BD=2

∴SABCD=4 = =

当且仅当a=b= ∈(1,2)时,SABCD=

答:窗口ABCD面积的最大值为


【解析】(1)求出正方形的边长,可得正方形的面积,利用面积大于 m2 , 即可求四根木条总长的取值范围;(2)设AB所在木条长为am,CD所在木条长为bm,求出AB,BD,可得窗口ABCD面积,利用基本不等式求窗口ABCD面积的最大值.
【考点精析】利用基本不等式在最值问题中的应用对题目进行判断即可得到答案,需要熟知用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网