题目内容
【题目】设,(其中a>0,且a≠1).
(1)请你推测g(5)能否用f(2),f(3),g(2),g(3)来表示;
(2)如果(1)中获得了一个结论,请你推测能否将其推广.
【答案】(1)g(5)=f(3)g(2)+g(3)f(2); (2)见解析
【解析】
(1)先写出g(5)=再探究用f(2),f(3),g(2),g(3)来表示它.
(2)考查(1)中的结论,观察自变量之间的关系,得出猜想,再进行验证证明.
(1)由f(3)g(2)+f(2)g(3)==,
又g(5)=,
因此 g(5)=f(3)g(2)+f(2)g(3).
(2)由 g(5)=f(3)g(2)+f(2)g(3),即g(2+3)=f(3)g(2)+f(2)g(3),
于是推测g(x+y)=f(y)g(x)+f(x)g(y),
证明:因为,(大前提).
所以,,,(小前提及结论)
所以
f(x)g(y)+f(y)g(x)=+×=
由上证知,此结论可以推广
练习册系列答案
相关题目
【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)中求出的线性回归方程,预测记忆力为14的学生的判断力.